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SUMMARY

Methods of linear systems analysis are applied to mathematical
models of aircraft flying at high angle of attack and maneuver rate.
First-order longitudinal and lateral-directional coupling is ob-
tained by linearizing the complete nonlinear equations of motion
about a generalized (quasi-steady) trim point. '"Open-loop" sta-
bility boundaries are defined using the linear dynamic equations,
and '"pilot-in-the-loop'" effects are presented. Stability augmen-
tation structures for maneuvering flight conditions are shown to
be defined readily using optimal control theory.

INTRODUCTION

High-performance aircraft are susceptible to degraded flying
qualities during maneuvering flight for a number of reasons. The
aircraft flies at high angle of attack, o, where aerodynamic flow
fields are complex and are sensitive to small variations in flight
condition. Lateral-directional modes of motion are affected by the
nose-high attitude, and the desirable control moments due to ail-
eron and rudder may be overshadowed by significant adverse effects.
Large roll rates may be commanded for rapid orientation of the 1lift
vector, and the resulting gyroscopic effects couple the longitu-
dinal and lateral-directional modes of motion. To compound the
above difficulties, the pilot must adapt his control strategies to
varying aircraft dynamics and control responses at high o.

Rigorous solutions to the aircraft's equations of motion are
difficult to obtain in maneuvering flight. These differential
equations have coefficients which are nonlinear and time varying;
hence, solutions of the general equations require direct integra-
tion, either by numerical or analog computation. The resulting time
histories describe the evolution of aircraft motions for given con-
trols, disturbances, and initial conditions, and each change in any
of these quantities leads to a new time history. Consequently, the
nonlinear-time-varying equations are valuable for defining specific
flight paths, but their complexity can obscure the identification
of the underlying mechanisms which govern aircraft response.

*This work was supported by Contracts No. NAS1-13618, NASA Langley
Research Center, and N00014-75-C-0432, Office of Naval Research.
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This paper presents new results using linear-time-invariant
dynamic equations which retain much of the coupling of the nonlinear
equations but which are amenable to the comprehensive techniques of
linear systems analysis. The stability characteristics of two con-
temporary high-performance aircraft are compared at various maneu-
vering flight conditions. The effects of increasing angle of
attack on control response are demonstrated, and a detailed mathe-
matical model of the human pilot is applied to the prediction of
flying qualities. The fully coupled linear aircraft model also
forms the basis for designing stability augmentation systems that
improve handling qualities and prevent departure from controlled

flight.

SYMBOLS
F fundamental matrix of linear-time-invariant system
py vector of nonlinear equations of motion
G control effect matrix of linear-time-invariant system
I identity matrix
K stability augmentation gain matrix
p,q,r body-axis angular rates (roll, pitch, yaw)
t time
u control variable vector
u,v,w body-axis velocities (axial, lateral, normal)
p:4 state variable vector
X5 Vo 2R translational position (forward, lateral, vertical)
z eigenvector
o angle of attack
B sideslip angle
A eigenvalue
$,0,¢ Euler angles (roll, pitch, yaw)
( )T transpose of a vector
(") derivative with respect to time
AC ) perturbation quantity
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EQUATIONS OF MOTION

The fundamental expression of rigid-body equations of motion
contains nonlinear and time-varying terms, but simplifications can
be considered in certain cases. Figure 1 illustrates the classes
of models which can be considered for analyzing flight motions.
If the dynamic coefficients are changing rapidly with time, in
comparison with the time scale of motions, the dynamic model must
be time varying; if the coefficients are relatively constant, a
time-invariant model will suffice. 1If flight motions evidence
the superposition characteristic; i.e., if doubling the input
doubles the output, then linear models can be used; if not, the
dynamic model must be nonlinear.

The nonlinear equations of motion can be assembled in the
single "state-space'" (vector) equation

x = £(x,u,t) (1)

where x is a column vector of state (or motion) variables, u is

a vector of control variables, f is the vector of dynamic equa-
tions, and t is time. For rigid-body motion, f and x each have

12 elements representing the dynamic relationships and associated
variables for translational and rotational kinematics and dynamics.
Using conventional notation for earth-relative position, earth-
body Euler angles, and body-axis rates, the state vector can be
defined as

T

fpd

u v wi p a r] (2)

- [XE Vg 7 i ¢ 0 ¥

where ( )T denotes the column vector transpose, i.e., a row
vector. The control vector, u, contains at least three elements
for rotational control about all axes. Further details of the
nonlinear equations of motion can be found in references 1 and 2.

Nonlinear-time-invariant models are useful if amplitude-
dependent effects cannot be ignored but time variations of the
coefficients are negligible. Nonlinear phenomena, such as limit
cycles, subharmonic response, jump resonance, and nonlinear
cross coupling may be responsible for such aircraft behavior as
wing rock, porpoising (or bucking), jump respounse of roll rate
to aileron input, and forcing of longitudinal modes by lateral
oscillations during symmetric, wings-level flight (refs. 3 and 4).

The stability and control of small variations about the
reference flight path can be investigated using linear dynamic
models whose coefficients may vary in time as the flight condition
varies. Linear-time-varying models could be required to assess
aircraft stability during rapid acceleration, deceleration, or
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for steep, high-speed flight paths, in which changing air density
affects system dynamics (refs. 5 to 7). Reference 2 indicates
that the accelerations associated with air combat maneuvering
introduce time-varying coefficients in linear models; however,
explicit time-varying dynamic effects were not found to be
significant, and all major conclusions regarding the flight
stability of the subject aircraft could be drawn from the equiva-
lent time-invariant model.

The aircraft equations of motion can be expressed in linear
form by performing a Taylor series expansion of equation (1) and
retaining only first-order terms. The expansion results in

Kot 0% = £(%g,uy,t) * L Ax + L du (3)
where fy and £, are partial derivative matrices with respect to
the state and Control, respectively, evaluated along the nominal
flight path. The nominal flight path satisfies equation (1), and
the dynamics of small perturbations from the flight path are
described by

Ax = F Ax + G Au (4)

where fy and f,; are denoted by F and G and may contain time-
varying coeffiCients.

Linear-~-time-invariant models describe small-perturbation
stability in the vicinity of a single flight condition, and can
be useful for practical approximation of system dynamics, for
sensitivity analyses, and for control system design. (References
8 to 11 use linear models in the examination of dynamic coupling
phenomena.) As shown in figure 1, coefficients of the linear
model are defined by the local slopes at a given flight condition,
and the principle of superposition applies in characteriging
flight motions.

The importance of linearizing about a generalized trim con-
dition is illustrated by figure 2, which presents linear and
nonlinear responses to a large rudder input. The nonlinear
model's trace demonstrates significant longitudinal/lateral-
directional coupling as well as large responses in sideslip, B8,
and roll rate, p. The model which is linearized about the initial
"wings-level" flight condition does not possess this coupling,
and the magnitudes of B-p oscillations are underestimated (fig. 2a).
Using the generalized trim procedure®* to define a linearization

*This trim procedure, described in reference 1, numerically defines
mean values of translational and rotational rates which minimize
translational and rotational accelerations for given Euler angles
and control settings.
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point 4 sec into the maneuver introduces the missing longitudinal/
lateral-directional coupling, leading to substantially improved
modeling of the nonlinear system's oscillations (fig. 2b). The
coupled linear system's response eventually diverges from the
nonlinear response, but the fact that it stays in the proper
neighborhood for several seconds suggests the utility of the
linear-time-invariant model in defining local stability, in pro-
viding a baseline for control system design, and in analyzing
piloting effects.

MANEUVERING EFFECTS ON STABILITY

Configuration-dependent effects and common attributes of
maneuvering flight can be seen in comparisons of the stability
boundaries of two contemporary high-performance aircraft. Air-
craft A is a small, supersonic air superiority fighter (ref. 1);
aircraft B is a larger supersonic fighter with similar mission
(ref. 2).

The stability boundaries of the aircraft are defined by the
conditions at which the real parts of the eigenvalues (or roots)
of the linear-time-invariant dynamic equation (eq. (4)) change
sign. The 12 eigenvalues, A{ (i=1 to 12), of the equation are
complex numbers, each of which satisfies the following equation:

det(XiI - F> =0 ; 1i=1 to 12 (5)

where I is the identity matrix. Each oscillatory mode is repre-
sented by two complex-conjugate Ai, while each convergent (or
divergent) mode is represented by one real Aj. The Aj describe
the time scales and stability of the normal modes of motion,
which usually partition into a longitudinal set (short period
oscillation, phugoid oscillation, and pure integrations (Ai=0)
for range and altitude) and a lateral-directional set (Dutch

roll oscillation, roll and spiral convergences, and pure integra-
tions for crossrange and yaw angle) during "wings-level!" flight.

The corresponding complex-valued eigenvectors, zj, indicate
the involvement of each motion variable in each mode, satisfying
the equation

<in-F> z, =0 ; i=1 to 12 (6)

For example, in symmetric flight the two complex-conjugate eigen-
vectors associated with the short period oscillation normally
involve large pitch rate and normal velocity components (&g and
w), small pitch angle and axial velocity components (A€ and Au),
and none of the remaining longitudinal and lateral-directional

1757



components. Thus, the zj are said to characterize the ''shape' of
each mode, while the Aj characterize the growth or decay of the
magnitude of z4.

Several effects of maneuvering flight can be noted. In-
creasing mean angle of attack or pitch rate alters the time scale,
stability, and shape of each mode, but it does not couple the
longitudinal and lateral-directional sets, as symmetry is main-
tained; therefore, the number of non-zero elements in each z4 is
unchanged. Introducing mean sideslip, roll rate, or yaw rate
leads to full coupling, and it alters aircraft stability; hence,
the number of non-zero elements in each zj increases. It is
often found that symmetric variations have greatest effect on
stability (due to changes in aerodynamic flow fields), while
asymmetric variations have greatest effect on mode shape (as a
consequence of inertial coupling).

Figure 3 illustrates the effects of a, and B, on the open-
loop stability boundaries of the two aircraft at an altitude of
6100 m. The different true airspeeds, Vg,, used in analysis have
small effect on the stability boundaries, although the differing
dynamic pressures affect the natural frequencies and time constants
of the normal modes. Aircraft A evidences an unstable phugoid
mode at low ap and an unstable Dutch roll mode (due to negative
damping) at high oy (fig. 3a). These results are apparently
insensitive to small sideslip angles; however, there is sub-
stantial change in mode shape (not shown). Although conventional
names are used, the "phugoid" mode contributes to significant roll
angle motion, and the "Dutch roll'" mode contains non-trivial
normal velocity response. At higher sideslip angles, there are
coupled, unstable oscillations and divergences, which also are
found in the response of Aircraft B (fig. 3b). The latter air-
craft is seen to possess unstable Dutch roll and roll-spiral
oscillation bands in the vicinities of 20- and 30-deg angle of
attack. Both instabilities can be traced to loss of directional
restoring moments.

Fighter aircraft are capable of high roll rate, and air
combat maneuvers often include such motions. For the aircraft to
roll with constant aerodynamic angles, the roll rate, Pwg, must
occur about the wind x-axis (which is the same as the stability
X-axis for constant nominal aerodynamic angles). Sideslip varia-
tions also are considered, since piloting error could easily
result in non-zero By during a rolling maneuver. Both positive
and negative pwy are considered, to account for roll "into" or
"out of" the sideslip. (The senses are opposite in the first
case, identical in the second.)

The stability boundaries that result from combined roll rate
and sideslip are shown in figure 4, and it is interesting to note
striking similarities between the boundaries of the two aircraft.
These boundaries are antisymmetric about the origin (as indicated
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in fig. 4b) because positive sideslip-positive roll rate has the
same effect on aircraft stability as negative sideslip-negative
roll rate. Both aircraft have stable bands near B, =10 deg when
Pwo is large, a beneficial effect of coupling. Instability is
substantial when each aircraft is sideslipped "into" the roll.
The eigenvectors (not shown) indicate that high pwy causes the Ap
component of the short-period mode to be greater than the Aqg
component.

References 1 and 2 present results regarding the stability of
symmetric pullups and a maneuver known as a ''rolling reversal"
(high-g pullup, roll, inverted flight, roll-out, and pullup). Both
aircraft have lateral-directional instabilities as a result of
large positive pitch rate. Aircraft A possesses an unstable Dutch
roll mode during most of the 22-sec maneuver. Aircraft B evidences
an unstable spiral mode for much of the maneuver, with a Dutch
roll instability during the final pullup. These results predict
increased pilot workload during maneuvering flight as a consequence
of factors not normally considered in stability and control

analyses.

CONTROL RESPONSE

Control input time histories demonstrate the transient re-
sponse of Aircraft B with increasing ap. The lateral control
input is applied for two seconds and then removed, and all re-
sponses are computed using the linear-time-invariant model.

Figure 5 shows the lateral-directional responses which result. As
angle of attack increases, both the system eigenvalues and the
control effectiveness vary. The unstable Dutch roll mode is
excited at ay of 20 deg, and the yaw rate response is reversed.
Although the aircraft is again stable at 235 deg, the control
response is poor due to the large adverse yaw response. At 30 deg,
the lateral control input excites the unstable roll-spiral oscil-
lation, which dominates the response.

Additional results contained in reference 2 indicate that
longitudinal response to lateral control is about 50 percent of
directional response levels when ap and Bpo are each 10 deg. When
Pwo = 75 deg/sec, the resulting Aq is one-third as large as Ar,
and Ao response is three times greater than AB response.

PILOTING EFFECTS

The effects which the pilot has on aircraft stability can
be modelled by a closed-loop system which feeds back aircraft
motions to available control surfaces. An optimal control pilot
model has been used for this purpose in references 2 and 12, and
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it contains the following elements: an estimator, which pro-
cesses the pilot's observations to provide an estimate of the
aircraft state; a controller, which mechanizes the pilot's regu-
lating functions and transmits the results to the neuromuscular
dynamics; and a neuromuscular model, which represents the dynamics
of the pilot's limbs.

Investigations of pilot-aircraft instability using the con-
trol-theoretic pilot model fall into two categories: +those in
which the pilot fails to stabilize an unstable aircraft, and those
in which the pilot destabilizes a stable aircraft. In the first
case, the pilot's time delay, observation noise, neuromuscular
time constants, and scanning factors are important parameters.
Assuming that the aircraft's linearized dynamics have one or more
unstable eigenvalues, the analysis determines pilot parameters for
which the optimal control model fails to exist. The second
category is related to the pilot's ability to adapt to changing
flight conditions. Pilot-induced oscillations (PIO) and departures
can occur because a control strategy which is appropriate to one
flight condition is destabilizing in another.

The control-theoretic pilot model can be used to analyze
nonadapting pilot behavior in a straightforward manner. 1In the
example considered here, the pilot model's control strategy is
first determined at a low-ay flight condition. This strategy is
frozen, and the aircraft's dynamics are allowed to change. The
stability of the pilot-aircraft system is determined by its
eigenvalues.

Nonadapted piloting effects on pilot-aircraft stability
regions can be presented in the aircraft's og-Bo plane. Figure 6
shows the stability regions under the assumption that the pilot
is adapted to ag = 10 deg and B = O deg. The instabilities of
the longitudinal modes (phugoid and short period) are the same in
both cases, since the available control is the same in both cases.
Figure 6 suggests that if the pilot model does not adapt, at some
point low-o, piloting procedure combined with adverse yaw will
cause an instability. In figure 6a this occurs at oo =17 deg, and
the incorrect procedure is characterized by an unstable (closed-
loop) spiral mode. When three controls are used, the instability
due to incorrect procedure does not occur until ag = 26 deg, as
shown in figure 6b. These results are compatible with experimental
results obtained from manned simulation and flight test of
Aircraft B.
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STABILITY AUGMENTATION FOR DEPARTURE PREVENTION

Flying qualities can be improved by using an automatic sys-
tem to compensate for variations in aircraft dynamic character-
istics. Control logic for a Departure-Prevention Stability
Augmentation System (DPSAS) can be developed using optimal con-
trol theory (refs. 1 and 2). The linear-optimal regulator is
a feedback control law of the form

Au = -KAx (7)

where K is a gain matrix which scales feedback and crossfeed
terms for proper stabilization and compensation of the aircraft's
motion (ref. 13). K varies to maintain good flying qualities

for large variations in maneuvering conditions, guaranteeing
closed-loop stability and accounting for all significant longi-
tudinal/lateral-directional coupling.

Comparisons of DPSAS closed-loop response with open-loop
response of the subject aircraft are presented in figures 7
and 8. Each aircraft is performing a constant-roll-rate maneu-
ver and is subjected to a AB initial condition of 1 deg. The
roll rate leads to substantial longitudinal response for both
aircraft, with Aircraft A exhibiting a lightly damped oscilla-
tion in the unaugmented condition and Aircraft B possessing a
real divergence. In both cases, the DPSAS quickly damps all
perturbations, using gains which are specific to the aircraft
and flight condition. Linear-time-invariant dynamic models
can be used to develop the necessary values of K throughout
the flight envelope, and gains can be scheduled in the flight
control system to minimize the probability of departure.

CONCLUSION

The analysis of aircraft flying at high angle of attack
and maneuver rate can be aided by considering fully coupled
linear-time-invariant dynamic models. The coupled linear equa-
tions are no more difficult to handle than uncoupled longi-
tudinal and lateral-directional sets when '"'state-space"
methods are used, yet they capture significant aspects of
maneuvering flight which otherwise would require the solu-
tion of nonlinear equations of motion. New insights regard-
ing open-loop stability boundaries, handling qualities, and
closed-loop control can be gained by direct extension of well-
established methods of linear systems analysis.
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